Tutrice : Mlle Trezzani

Accueil travail http://julientap.free.fr/

Université Paris XII - Val de Marne

I.U.P. SIAL

61 Avenue du Général de Gaulle

94000 Créteil

 

 

 

ASPARTAME

Rapport de Projet Tutoré Licence SIAL

Février 2004

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


COLLARD

Gaétane

TAP

Julien


 

 

 

 

 

 

 

 

 

 

"Tout peut être poison et rien n'est dénué de toxicité. Seule la dose fait qu'une chose peut n'être pas un poison"

Paracelse, XVI eme siècle


SOMMAIRE

resume

abstract

INTRODUCTION.. 1

I.     L'aspartame : de sa découverte à sa légalisation.. 2

A.        Qu'est ce que l'aspartame. 2

1.    Découverte de l'aspartame. 2

2.    Propriétés 2

3.    Commercialisation. 4

B.        Réglementation.. 5

1.    Produits et la quantité autorisée. 5

2.    Critères de pureté. 6

3.    Etiquetage. 7

4.    DJA.. 8

II.        De la production à la métabolisation.. 9

A.        Synthèse industrielle. 9

1.    Voies Chimiques et enzymatiques 9

2.    Voie biotechnologique. 11

B.        L'aspartame dans les aliments.. 13

1.    Utilisation en synergie. 13

2.    Utilisation dans les produits allégés 15

3.    Métabolisation de l'aspartame. 15

III.       L'aspartame et la sécurité (des rumeurs à la réalité) 17

A.        L'acide aspartique. 17

B.        Phénylalanine. 18

C.        Dérivés.. 20

1.    Instabilité. 20

2.    Méthanol 22

3.    Dicétopipérazine. 24

D.        Consommation humaine et DJA.. 25

CONCLUSION.. 26

Table des illustrations. 27

BIBLIOGRAPHIE. 28

annexes

 


Résumé

Découvert en 1965 par Searle, l’aspartame est un dipeptide méthylé provenant de la synthèse d’acide aspartique et de phénylalanine. Ses propriétés chimiques lui confèrent un fort pouvoir sucrant qui l’amènera à sa mise sur le marché dés 1974. Son faible apport calorique conduira à son utilisation dans plus de 5000 produits dit « allégés ». L’aspartame subit une réglementation très stricte et apparaît sous le code E 951. Les législations françaises et européennes définissent des doses maximales d’emplois et une Dose Journalière Admissible de 40mg/kg de poids corporelle. Ses avantages métaboliques entraînèrent une demande grandissante des consommateurs. Pour faire face, les industriels, qui pratiquaient d’abord une synthèse chimique puis enzymatique, ce sont tournés vers une voie biotechnologique à plus fort rendement. Néanmoins cet additif a été souvent mis en cause dans de nombreux effets secondaires chez l’homme, notamment dus à la présence d’acide aspartique, de phénylalanine et de dérivés. Cependant l'aspartame est une source mineure de ces composés en comparaison des apports alimentaires courants de ces substances. Des études de la Food and Drug Administration et de l’Agence Française Sécurité Sanitaire des Aliments ont démontrés l’innocuité de l’aspartame dans des conditions normales d’utilisation.

Mots clés :

Ø      Aspartame

Ø      Acide aspartique

Ø      Phénylalanine

Ø      Pouvoir sucrant

Ø      Produits dit « allégés »

Ø      E 951

Ø      Dose Journalière Admissible

Ø      Synthèse

Ø      Food and Drug Administration

Ø      Agence Française Sécurité Sanitaire des Aliments


Abstract

Discovered in 1965 by Searle, aspartam is a methylated dipeptide coming from the aspartic acid and phenylalanine synthesis. Its chemicals properties confer a strong sweetening capacity which will lead to the market place in 1974. With weak caloric contribution, it will lead to use in more than 5000 "light" products. Aspartam undergoes a very strict regulation and appears under the E 951 code. The French and European legislations define maximum employment dose and a Daily Admissible Dose of 40 mg/kg body weight. Its metabolics advantages involved a growing consumer’s request. To face, the industrials, who practised initially a chemical synthesis then enzymatic, turns towards a biotechnological way with stronger output. Nevertheless this additive was often blamed in many side effects on man, in particular with the aspartic acid, phenylalanine and derivatives presences. However aspartam is a minor source of these compounds to compare the current food contributions of these substances. Food and Drug Administration and AFSSA studies showed the harmlessness of the aspartame under normal conditions of use.

Key words:

Ø      Aspartame

Ø      Aspartic acid

Ø      Phenylalanine

Ø      Strong sweetening capacity

Ø      "Light" products

Ø      E 951

Ø      Daily Admissible Dose

Ø      Synthesis

Ø      Food and Drug Administration

Ø      AFSSA

 

 


INTRODUCTION

Découvert en 1965 par un chimiste de la société Searle, la première autorisation de mise sur le marché de l'aspartame a été accordée aux Etats-Unis par la Food and Drug Administration en 1974. L'aspartame est autorisé en France comme édulcorant de table et dans de nombreux aliments. Il est codé en tant que E 951 dans la classification des additifs.

L’aspartame est utilisé dans près de 5000 produits à travers le monde, dont plus de 2000 se trouvent en Europe. Sa large utilisation vient du fait que l’aspartame a un pouvoir sucrant environ 200 fois supérieure à celui du sucre et par conséquent, il suffit de petites quantités pour assurer un excellent goût sucré. L’aspartame est unique par rapport aux autres édulcorants intenses en ce sens que l’apport de ses divers composants est comparable à l’apport des mêmes substances issues d’aliments naturels.

Cependant, la consommation d'aspartame a été mise en cause dans l'apparition de nombreux effets secondaires chez l'homme. Il serait à l'origine d'effets nocifs sur le système nerveux central, et serait notamment impliqué dans l'augmentation de la fréquence des cancers.

 

Après un rappel des propriétés physico-chimiques de l'aspartame et de la réglementation qui en découle, ce rapport fait le point sur, d'une part les différents stades de la molécule, de sa production à sa métabolisation et, d'autre part, l'importance des différents métabolites sur l'organisme. En effet, pour une population particulière comme les personnes diabétiques, un risque potentiel pourrait découler d'une consommation importante.


I.                L'aspartame : de sa découverte à sa légalisation

La découverte de l'aspartame a révélé que ce dipeptide possédait un fort pouvoir sucrant. Cette propriété chimique fait de lui un édulcorant intense et sa commercialisation, ainsi que son utilisation dans les aliments sont soumis à une réglementation très stricte.

A.   Qu'est ce que l'aspartame

La découverte de l'aspartame l'a conduit à étudier ses propriétés chimiques qui font de lui un édulcorant intense. Doué d'une saveur sucrée, l'aspartame a très vite été mis sur le marché.

1.     Découverte de l'aspartame

L'aspartame fut découvert par hasard en 1965 par J. Schlatter, chimiste de la société Searle, lors de la synthèse d'un médicament antiulcéreux (tétrapeptide gastrique) destiné à un essai biologique. C’est en s’en faisant tomber sur les doigts qu’il fut goûté pour la première fois. Le produit intermédiaire de la réaction de synthèse, un dipeptide, constitué d'acide aspartique et de phénylalanine se révéla sucré. Ces deux composés pris isolement n'ont pas une saveur sucrée et le dipeptide non méthylé a une saveur amère. Schlatter essaya ensuite de nombreux autres composés de structure voisine, mais décida finalement de commercialiser le produit original qui devint connu sous le nom d'aspartame. [XIII]

2.     Propriétés

a) Les édulcorants

Les édulcorants appartiennent à la quatorzième catégorie des additifs. En raison de leur très haut pouvoir sucrant, les édulcorants intenses s'utilisent en remplacement des produits sucrants classiques et permettent d'obtenir une réduction substantielle, voire totale de la teneur calorique du produit fini.

On distingue deux types d'édulcorants intenses :

Ø      Substances chimiques : saccharine, cyclamate, acésulfame, aspartame, etc.

Ø      Substances d'origine végétale : stévioside, thaumatine, monelline, etc. [XIV]

b)    L'aspartame

C'est un ester méthylique d'un dipeptide, L-aspartyl, L-phénylalanine appelé : L-aspartyl L phénylalanine méthyle ester. Sa masse moléculaire est de 294 g/mol.

 

 

Figure 1 : Formule chimique de l'aspartame

Source : Additifs et auxiliaires de fabrication dans les industries agroalimentaires.  [XIV]

 

Ø      Caractéristiques et propriétés chimiques

L’aspartame se présente sous forme d’une poudre blanche cristalline et inodore. Sa stabilité peut dépasser une année dans des conditions de stockage normales.

 

La solubilité dans l’eau de l’aspartame est dépendante du pH et de la température : le maximum de solubilité est atteint à pH 2,2 (20 mg/mL à 25°C), la solubilité minimale à pH 5,2 est de 13,5 mg/mL à 25°C. Sa stabilité en solution est fonction des conditions de température, de pH et du temps de stockage. D'une façon générale, cette stabilité est bonne à 20-25 °C dans la plage de pH 3-5, avec un maximum autour de 4 ; seule l'exposition prolongée aux effets conjugués d'un pH extérieur à cette plage, d'un pH alcalin notamment, et d'une température plus élevée, entraînent une dégradation et une perte de pouvoir sucrant significatives. [XIV, XI, XVIII]

Ø      Pouvoir sucrant

Le pouvoir sucrant de l'aspartame est de 150 à 200 fois supérieur à celui du saccharose utilisé comme référence.  

C'est la configuration de la molécule de l’aspartame qui permet tout simplement d'activer plus de récepteurs sur la langue (les papilles) donnant alors l'impression d'un goût plus sucré que celui du saccharose. Pour activer les récepteurs linguales du goût sucré, une molécule doit comporter trois régions caractéristiques :

Ø      un groupement NH ou OH,

Ø      un atome d'oxygène ou d'azote,

Ø      un groupement hydrophobe.

Il faut que ces régions moléculaires soient espacées d'une certaine distance et variant peu, c'est le cas de l'aspartame. [XII]

3.     Commercialisation

Searle a été racheté en 1985 par Monsanto qui se nomme actuellement NutraSweet/Kelco. L'aspartame fut commercialisé sous le nom de "NutraSweet" et a fait l'objet de dépôt de nombreux brevets. L'expiration des brevets d'exclusivités de NutraSweet est de 1987 pour le Canada, de 1987-1989 pour l'Europe et de 1992 pour les USA.

 

Aujourd'hui, quatre filiales de NutraSweet (Etats-Unis) commercialisent l'aspartame :

Ø      ARNAUD SA avec la dénomination NutraSweet. (France)

Ø      NutraSweet AG avec la dénomination NutraSweet INGREDIENT EDULCORANT. Leur produit en poudre ou granulés se vend en fût de 25 kg ou en boîte de 1 à 5 kg. (Allemagne)

Ø      EUROSUCRE avec la dénomination NutraSweet SWEETENER COMPAGNY (HSC) fût de 25 kg. (France)

Ø      AJINOMOTO (Japon), sous le nom de NutraSweet, Candérel, Pouss-suc [XIII]

B.    Réglementation

Une première autorisation de mise sur le marché (AMM) a été accordée aux Etats-Unis par la Food and Drug Administration (FDA) en 1974. Cette AMM a été suspendue quelques mois après à la suite de possibles effets toxiques et cancérogènes sur le cerveau de ce composé ou de ses métabolites.

Ø      1981 : Après que les effets toxiques furent démontrés comme non véritables, la FDA accorde de nouveau l’AMM dans les aliments solides.

Ø      1983 : cette autorisation était étendue aux boissons gazeuses.

Ø      1988 : l’aspartame est autorisé en France, il correspond au code E 951.

Ø      1995 : son utilisation est harmonisée au niveau de l'Union Européenne grâce à la directive 94/35/CE et est approuvée dans plus de 90 pays.

Ø      1996 : la directive 96/83 est venue compléter la précédente en élargissant le champ d'emploi en termes d'édulcorant, catégorie et dose maximum d'emploi. L'aspartame est également listé dans la directive de la Commission concernant les critères de puretés n° 95/31/CE. Aussi, une directive concernant l'étiquetage des produits est entrée en vigueur. [XIV, XVI]

1.     Produits et la quantité autorisée

L'aspartame est actuellement utilisé dans plus de 5 000 produits à basses calories. Parmi les denrées susceptibles de le contenir, les boissons, les gommes à mâcher, les crèmes desserts, les produits laitiers, les confitures, les produits de confiseries peuvent être cités. C'est actuellement l'édulcorant le plus largement utilisé en France. [XIV, XVII]

 

D’après la figure 2 ci dessous, la législation française et européenne est globalement identique vis-à-vis des doses maximales d’emploi malgré une divergence pour les confiseries et les confitures. De plus la législation prévoit que tous les produits équilibrés de valeur énergétique supérieure à 4200 kJ doivent contenir au maximum 100 mg/420 kJ d’aspartame.

Figure 2 : doses maximales d'emploi de l'aspartame

Source : Additifs et auxiliaires de fabrication dans les industries agroalimentaires.  [XIV]

 

D’autre part, la législation tolère une dose maximale d’emploi plus importante dans les produits à faible teneur en eau (activité de l’eau comprise entre 0,34 et 0,66), comme les gommes et les confitures, que dans les produits à forte teneur en eau comme les boissons. Ceci provient du fait que l’aspartame a une faible solubilité et par conséquent une faible stabilité dans les solutions aqueuses.

2.     Critères de pureté

L'arrêté du 11 mars 1988 impose différents critères de pureté à l'aspartame :

Ø      Teneur : pas moins de 98 % de C14H18N2O5 et pas plus de 102 % calculée sur le produit anhydre ;

Ø      Pertes à dessiccation : inférieures ou égales à 4,5 %, 4h à 105 °C ;

Ø      Cendres sulfatées : pas plus de 0,2 %, sur la base du produit anhydre ;

Ø      pH : entre 4,5 et 6 pour une solution au 1/125 ;

Ø      Acide 5-benzyl-3,6-dioxo-2-pipérazinéacétique : 1,5 % maximum, sur la base du produit anhydre ;

Ø      Facteur de transmission : le facteur de transmission d'une solution à 1 % dans l'acide chlorhydrique 2 N est déterminé à 430 nm, à l'aide d'un spectromètre. Celui-ci ne doit pas être inférieur à 0,95, ce qui équivaut à un coefficient d'absorption ne dépassant pas approximativement 0,022.

Ø      Pouvoir rotatoire spécifique : déterminé dans 15 N de solution d'acide formique à 4 % dans un délai de 30 minutes suivant la préparation de l'échantillon. [XIV]

 

En ce qui concerne les substances présentes :

Tableau 1 : Concentration maximale des métaux lourds

Source : Additifs et auxiliaires de fabrication dans les industries agroalimentaires.  [XIV]

 

Substances

Concentrations maximales

en mg/kg

Plomb

10

Arsenic

3

Cadmium

0,5

Mercure

0,5

Sélénium

0,2

 

3.     Etiquetage

La présentation et la publicité de l'aspartame de table et des produits édulcorés avec celui-ci doivent répondre aux exigences suivantes : [XIV, XVIII]

 

Pour l'aspartame de table :

Ø      " Ne pas donner aux enfants de moins de 3 ans ",

Ø      la valeur énergétique de l'unité de consommation doit être précisée,

Ø      doit figurer la mention "contient de la phénylalanine".

 

 

 


 

Figure 3 : Photographie d'une étiquette d'une boisson contenant de l'aspartame

Source : Société Coca Cola

 

Pour les produits contenant de l'aspartame, sa présence doit être indiquée par l'une des mentions suivantes :

Ø      " Contenant de l'aspartame ",

Ø      " Édulcoré à l'aspartame",

Ø      " À l'aspartame ".

Ø      doit figurer la mention "contient de la phénylalanine". (Figure 3)


 

4.     DJA

La toxicité est l'étude des effets produits par la substance à tester, administrée une seule fois. La dose qui entraîne la mortalité de 50 % des animaux est appelée dose létale 50 (DL 50). On opère sur deux espèces animales, dont l'une doit appartenir à un autre ordre que celui des rongeurs. Mais aujourd'hui, la DL 50 n'a plus beaucoup de signification en raison du mode d’administration unique, on parle plus souvent de la Dose Journalière Admissible (DJA) qui est un modèle plus réaliste.

La DJA est l'outil mis au point pour apprécier les risques toxicologiques liés à la consommation des additifs. Il s'agit d'un critère dont la définition repose sur des conventions qui doivent être connues (dose sans effet, facteur de sécurité), et qui peuvent dans une certaine mesure être discutées. La bonne utilisation de ce critère rend en tout cas souhaitable une meilleure connaissance de la consommation réelle ou potentielle de l'additif. Il faut pour cela disposer de résultats d'analyses et d'enquêtes, pour évaluer non seulement les consommations moyennes, mais aussi celles de certains groupes de consommateurs particulièrement exposés ou fragiles.

La DJA correspond à la quantité maximale d'additif acceptable par l'homme avec le maximum de garanties. Un comité mixte OMS (Organisation Mondiale de la Santé)/FAO (Organisation pour l’Alimentation et l’Agriculture) ont établi l'innocuité de l'aspartame en 1981 et ont permis de fixer une DJA de 40 mg/kg de poids corporel/jour, ce qui correspond, en termes de saveur sucrée, à 5 fois la consommation journalière moyenne de saccharose pour une personne de 60 kg. [XIV, XV, XVIII]

II.            De la production à la métabolisation

Connaissant les propriétés chimiques, les industriels ont dû se diversifier dans le mode de synthèse de l'aspartame pour augmenter le rendement de production et ainsi, faire face à la forte demande des consommateurs. Les avantages métaboliques qui en découlent font de l'aspartame un additif de plus en plus utilisé en industries alimentaires.

A.    Synthèse industrielle

L’aspartame s’obtient par l’association méthylique de deux aminoacides : l’acide aspartique et la phénylalanine. Au moment de sa découverte l’aspartame est fabriqué par synthèse chimique. Cependant bien qu’exploité dans les premiers temps cette voie fut écartée pour l’utilisation de la voie enzymatique, avec un rendement de production plus élevé. Par la suite l'utilisation de la voie biotechnologie s'est avérée encore plus efficace.

1.     Voies Chimiques et enzymatiques

Figure 4 : voies de synthèses de l'aspartame

Source : Université de Lyon [VIII]

 

 

 

La figure 4 présente les deux voies de synthèses de l’aspartame :

Ø      Une synthèse par voie chimique lors de laquelle certaines impuretés telle que la Z-b-aspartame (6) sont formées.

Ø      Une synthèse "plus propre" par voie enzymatique qui mène à la formation de la Z-a-aspartame seule, mais qui est totalement réversible et qui se poursuit jusqu’à ce que l’équilibre soit atteint.

Ces deux voies de synthèses sont problématiques pour l’industrie car elles possèdent un faible rendement. En effet, la voie chimique génère des impuretés et la voie enzymatique se neutralise lorsque l’équilibre réactionnel est atteint.

Alors que la synthèse chimique ne fut plus envisagée, la synthèse enzymatique fut étudiée notamment pour répondre au problème de rendement dû au déplacement d’équilibre de réaction. Le rendement de la synthèse de l’aspartame fut alors amélioré par l’introduction de polymères à empreinte moléculaire (MIPs) capables de former avec le produit un complexe facile à extraire du milieu réactionnel. L’équilibre de la réaction se trouverait alors déplacé dans le sens de la formation du produit. [VIII]

 

Voici, figure 5, le principe de la réaction :

Figure 5 : principe de la réaction avec les MIPs

Source : Université de Lyon [VIII]

 

Ø      Formation du MIP : Le Z-a-aspartame lui-même est utilisé pour l’élaboration du polymère. Il est placé dans une solution d’acétate d’éthyle en présence d’un monomère réticulant, ici l’acide méthacrylique. Le polymère à empreinte moléculaire ainsi formé est donc caractéristique du produit de la réaction.

 

Ø      Efficacité du MIP : Il est incubé à 37 °C avec les réactifs, l’acide Z-L-aspartique et le méthylate de L-phénylalanine, en présence de thermolysine. Au bout de 48h, la réaction a atteint un rendement maximum, et après ce temps d’incubation, la thermolysine est désactivé et l’ester décomposé.

Ø      Amélioration du rendement : La présence de MIP caractéristique du Z-a-aspartame permet d’atteindre un rendement de 63 % à comparer au 15 % obtenu sans ajout de MIP.

Cependant, les MIPs fixent leur cible, en l’occurrence l’aspartame, par des liaisons hydrophobes non spécifiques. Ceci explique ce relativement faible rendement de 63%. Une autre solution est alors envisagée : le recours à la biotechnologie. [VIII]

2.     Voie biotechnologique

Le principal problème avec la synthèse chimique est la formation d’un isomère optique qui possède un goût amer et doit être complètement extrait de la production. L’approche alternative est d’utiliser une biocatalyse qui utilisera un enzyme pour terminer la synthèse.

L’enzyme employée est appelée thermolysine. La thermolysine provient de Bacillus proteolicus / thermoproteolyticus des mers chaudes du Japon. L’enzyme est stable jusqu’à des températures de 60°C. Elle est extraite et utilisé sous sa forme soluble depuis 1988.

Les produits non désirés de la réaction, en l’occurrence la D-phenylalanine, sont extraits de la mixture par filtration sur membrane puis réinjecté aux étapes précédentes dans le but de terminer la synthèse complète.

L’enzyme est complètement stéréo sélective. Cela signifie qu’il est possible d’utiliser un mélange racémique car l'enzyme utilise uniquement l'isomère lévogyre. Aucun isomère amer de l’aspartame n’est produit. La réaction a lieu dans une solution aqueuse à pH neutre et à 50°C.

Après la réaction enzymatique, un processus chimique (figure 6), est employé pour enlever le groupe de protection et de convertir le méthyle ester en aspartame. [V]

Figure 6 : Bilan chimique de la réaction de fabrication de l'aspartame

Source: Chemical Industry Education Center [V]

 

L’acide chlorhydrique permet l’hydrolyse du groupe méthyle ester et la formation d’un sel à partir du groupe amine de la phénylalanine : D-phénylalanine méthyle ester chlorhydrique. Ce sel est racemisé puis réinjecté à l’étape de départ.

En excès de phénylalanine méthyle ester, la forme protégée de l’aspartame est peu soluble et précipite de la mixture. Ce qui rend facile son extraction par filtration (figure 7).

Lors de cette synthèse, le rendement est supérieur à 99,99 %. En effet, l'aspartame produit par cet enzyme est l’isomère sucrant requis. [V]

Figure 7 : schéma de la chaîne de production d'aspartame

Source: Chemical Industry Education Center [V]

B.   L'aspartame dans les aliments

L’aspartame est souvent utilisé en synergie avec d’autres additifs. Par la suite quelques exemples significatifs de son utilisation dans les aliments seront cités.

1.     Utilisation en synergie

L'aspartame peut également être utilisé avec d'autres additifs dans un autre but que son pouvoir sucrant. En effet, de nombreux mélanges de ce type présentent un intérêt technologique certain et sont donc mis en œuvre industriellement : on peut distinguer de ce point de vue deux catégories de systèmes : les mélanges entre édulcorants, d'une part, et les mélanges avec d'autres additifs, d'autre part.

 

 

 

a)     Mélanges entre édulcorants

Il y a synergie entre deux ou plusieurs édulcorants lorsque le pouvoir sucrant de l'ensemble est supérieur à la somme des pouvoirs sucrants de chacun d'eux pris isolément.


 

Figure 8 : pouvoir sucrant des édulcorants intenses en fonction du temps

Source : UNIPEX [VII]

 

L'acésulfame K et la saccharine sont des édulcorants intenses avec réciproquement, un pouvoir sucrant de 200 et 400. La saveur sucrée est agréable et se manifeste rapidement, toutefois un arrière goût amer est perceptible aux fortes concentrations.

Dans ce cas (figure 8), l'aspartame est employé simultanément pour éliminer l'arrière goût, tout en conservant la même saveur sucrée. L'aspartame à une saveur apparente importante, pour une dissipation plus longue en bouche que les autres édulcorants intenses. [VII]


 

b)    Mélanges avec d'autres additifs

Dans la formulation d'une limonade, on utilise de l'aspartame et de la saccharine à des proportions équivalentes dans le but d'obtenir la meilleure synergie. Aussi, afin d'éviter une décomposition de l'aspartame à pH 2,6, le pH de la limonade est remonté à 3,2 par addition de citrate de sodium. En raison de la modification de pH, le produit est devenu plus sensible aux contaminations microbiologiques, c'est pourquoi de l'acide benzoïque est ajouté comme agent conservateur.

Aussi, l'arrière goût de l'aspartame (amertume par exemple) est masqué par l'acide malique selon une étude de la société Bartek (UNIPEX). Ceci permet aux produits contenant de l'acide malique de ne pas livrer trop rapidement le goût et l'arôme, évitant ainsi une dissipation trop importante ou trop brutale. L'effet de synergie obtenu permet de diminuer (dans certaines formulations) la teneur en arômes. [XIII, XIV]

2.     Utilisation dans les produits allégés

L'aspartame se retrouve dans des milliers d'aliments transformés et des boissons. Ce sont des produits de substitution qui ont été créés afin de remplacer les aliments sucrés fortement énergétiques. L'aspartame a permis aux industries alimentaires, une solution de rechange aux cyclamates et à la saccharine, interdits dans les aliments par le gouvernement depuis que des études chez les animaux ont révélé qu'ils entraînaient des cancers.

  L'aspartame est particulièrement présent dans les aliments diététiques. Ces produits permettent de faire face à un effet de surconsommation dans les populations occidentales qui utilisent des aliments caloriques en trop grande quantité. Aujourd'hui, l'aspartame se retrouve dans diverses catégories d'aliments :

Ø      Le marché du soda est particulièrement concerné et surtout, l'aspartame est omniprésent dans les boissons "light".

Ø      Certains produits laitiers contiennent également de l'aspartame qui permet de diminuer la valeur énergétique globale du produit. On en retrouve dans les yaourts, les crèmes desserts, les desserts lactés, mais également dans les crèmes glacées.

Ø      Les confiseries dont les gommes à mâcher.

Ø      La pâtisserie, etc. 

3.      Métabolisation de l'aspartame

L’aspartame est métabolisé dans la lumière intestinale et au niveau des entérocytes. Il existe deux voies de métabolisation de l'aspartame :

Ø      Le catabolisme engendre approximativement 50 % de phénylalanine, 40 % d’acide aspartique et 10 % de méthanol. Par la suite ces deux acides aminés seront réutilisés par l’organisme comme par exemple lors la synthèse d’autres polypeptides.

Ø      Mais l'aspartame peut aussi se cycliser en dicétopipérazine.

Il est possible qu’une faible partie de l’aspartame (10-12 % de la dose) soit absorbée sans métabolisation mais ces résultats demandent à être confirmés.


La consommation d'aspartame présente plusieurs intérêts d'un point de vue nutritionnel :

Ø      Pour les diabétiques, contrairement aux glucides, l'ingestion d'édulcorants intenses n'entraîne pas de sécrétion d'insuline (hormone absente ou déficiente chez les personnes diabétiques). L'aspartame offre alors aux diabétiques la possibilité d'apprécier la saveur sucrée de nombreux produits. [III, XIV, XVI]

Ø      L'aspartame apporte que 4 kcal/g, l'apport calorique est donc négligeable. Par conséquent, la réduction de la quantité d'énergie ingérée constitue une mesure prioritaire pour prévenir et traiter l'excès de poids. Aussi, des études ont montré que l'ingestion d'aspartame ne stimulait pas la sécrétion céphalique d'insuline, donc n'entraînait pas de sensation de faim. [III, XIV, XVI]

Ø      L'aspartame n'est pas fermentescible par les bactéries de la flore buccale. Ainsi il ne participe ni à la formation de la plaque dentaire, ni à la formation d'acide cariogène. [III, XVI]


III.       L'aspartame et la sécurité (des rumeurs à la réalité)

Selon le métabolisme de l'aspartame dans l'organisme, on peut obtenir plusieurs produits : L'acide aspartique, la phénylalanine, et d'autres dérivés dont la dicétopipérazine et le méthanol. Leur présence suscite une réflexion du point de vue sécurité.

A.   L'acide aspartique

 


Figure 9 : acide aspartique

Source : Chemical Industry Education Center [V]

 

 

 

L’acide aspartique (figure 9), représente 40% des produits de métabolisation de l’aspartame.


 Le Dr Russell L. Blaylock, professeur en neurochirurgie à l'université de médecine du Mississippi, a récemment publié un ouvrage détaillant les dommages causés par l'ingestion excessive d'acide aspartique issu de l'aspartame. Il fait mention de près de 500 références scientifiques afin de démontrer comment un excès d'acides aminés libres excitateurs tel que l'acide aspartique dans notre alimentation sont causes de sérieux désordres neurologiques chroniques. [I, II, IV]

 

Réalité sur l’acide aspartique :

L’acide aspartique est un neurotransmetteur normal mais toute substance consommée à des doses excessives peut être toxique. Ceci s’applique également à l’acide aspartique. En effet, l'acide aspartique n'est dangereux que lorsque son niveau dans le plasma dépasse 100 µmol/dL. Or, même à la dose extrême de 200 mg/kg de poids corporel, le niveau d'acide aspartique dans le sang n'approche pas le seuil réputé toxique. De plus, les aliments édulcorés ne constituent pas les sources principales en acide aspartique (figure 10). Par conséquent, cette toxicité ne se rencontrerait pas chez les humains suite à la consommation alimentaire habituelle d’aspartame. D'après le Professeur John Fernstrom à l'université de Pittsburg. [VI, XV, XVII]

Figure 10 : Représentation de la quantité d'acide aspartique dans les aliments

Source : Nutrition : "la vérité si je mange" [XVIII]

 

B.    Phénylalanine

 


Figure 11 : phénylalanine

Source : Chemical Industry Education Center [V]

*

 
La phénylalanine (figure 11), représente 50% des produits de métabolisation de l’aspartame. C'est un acide aminé qui est normalement présent dans le cerveau.


 Les personnes souffrant du désordre génétique, phénylcétonurie (PKU), ne peuvent pas cataboliser la phénylalanine. Dans ce cas, il est contre indiqué.

Il a été démontré que l'ingestion d'aspartame, peut provoquer des niveaux excessifs de phénylalanine dans le cerveau, même chez des personnes ne souffrant pas de PKU. En excès, ces niveaux peuvent amener une décroissance du niveau de sérotonine, conduisant à des désordres émotionnels tel que la dépression. Il a été démontré que les niveaux de phénylalanine dans le sang étaient accrus d'une façon significative par effet d’accumulation chez les sujets humains ayant utilisé chroniquement l'aspartame. Même une seule prise normal d'aspartame fait monter les niveaux de phénylalanine. [I, II, IV]

 

 

 

 

La réalité sur la phénylalanine :

La phénylalanine est un acide aminé essentiel apporté uniquement par l'alimentation. Dans l’organisme, la phénylalanine n’est pas seulement un composant des protéines, mais aussi le précurseur des neurotransmetteurs que sont la dopamine, la noradrénaline et l’adrénaline.

Il existe, dans beaucoup de pays, une obligation légale d’effectuer chez les bébés un test de dépistage de la PKU, à la naissance. Le traitement implique un contrôle prudent de toutes les sources de phénylalanine dans l’alimentation. C’est pourquoi les produits contenant de l’aspartame doivent renseigner qu’ils contiennent une source de phénylalanine. [IV, VI, XVII]

Les patients phénylcétonuriques ont deux gènes défectueux, un gène provenant de chaque parent. Les individus qui ont un seul gène pour la PKU (les sujets hétérozygotes) ne développent pas la maladie, mais ont une capacité réduite à métaboliser la phénylalanine.

Figure 12 : Mécanisme de la Phénylcétonurie

Source : UNIVERSITY OF NEWFOUNLAND CANADA [IX]

 

Tous les autres individus sont capables, sans problème, de métaboliser et d’éliminer l’excès de phénylalanine (figure 12). Une augmentation des taux plasmatiques de phénylalanine est observée seulement lors d'un apport alimentaire d’aspartame important et en une seule prise.

Cependant, il convient de comparer la quantité de phénylalanine libérée au cours de la digestion de l’aspartame, par rapport à celle disponible à partir d’autres aliments (figure 13). L’aspartame est seulement une source mineure de phénylalanine alimentaire.

L’apport typique de phénylalanine à partir de toutes les sources alimentaires est de 3 à 5 g/jour pour un adulte.

Figure 13 : contenu en phénylalanine dans les aliments

Source : SWEETENERS [VI]

 

En comparaison, une boisson light à l’aspartame de 33 cL apporte 100 mg de phénylalanine. Ceci équivaut à manger 100g de riz cuit ou 50g de yaourt.

C.   Dérivés

L'acide aspartique et la phénylalanine ne sont pas les seuls métabolites de l'aspartame, en effet, celui-ci dans un état d'instabilité conduit à la formation de méthanol et de dicétopipérazine.

1.     Instabilité

L'aspartame est l'édulcorant de synthèse dont la stabilité a été la plus étudié. Ce produit est relativement instable en solution et se décompose en donnant naissance à un dipeptide : aspartyl phénylalanine et la dicétopipérazine correspondante dépourvue du pouvoir sucrant.

Les principaux paramètres qui interviennent dans la stabilité de l'aspartame sont :

Ø      Le temps de stockage (diminution de l'aspartame)

Ø      Le pH a des effets variables : la meilleure stabilité de l'aspartame en solution aqueuse à 25°C se situe entre pH 3 et 5 et elle est maximale à pH 4,3. Ce sont les conditions réalisées dans des boissons carbonatées type colas, limonades et sodas.

Ø      L'humidité et température : en milieu hydraté, à des températures de conservation allant de 30 à 80°C, l’aspartame est dégradé en dicétopipérazine, ce qui le rend inutilisable dans les aliments chauffés (cuisson, stérilisation…), sauf lorsqu'il est sous une forme encapsulé. L’aspartame est très stable à l’état sec : à 105°C une perte d’environ 5 % (formation de dicétopipérazine) est observée après 100 heures de traitement. A 120°C, une perte de 50 % est obtenue au bout de 80 heures de traitement. [XIII]

Dans les produits congelés, la stabilité de l’aspartame est bonne.

 

Les étapes de décomposition thermique de l'aspartame sont représentées sur la figure 14.

Figure 14: étapes de décomposition thermique de l'aspartame

Source : Additifs alimentaires et auxiliaires technologiques [XIII]

 

2.     Méthanol

Le méthanol correspond, en poids, à environ 10 % de l'aspartame. L'absorption du méthanol par l'organisme est accélérée considérablement lorsque du méthanol libre est ingéré. Le méthanol libre est créé à partir de l'aspartame lorsqu'il est chauffé au-dessus de 30°C ou incorrectement stocké.

Le méthanol se décompose dans le corps en acide formique, en formaldéhyde et en dioxyde de carbone. Les deux premiers métabolites sont toxiques. Il est recommandé une limite de consommation de 7,8 mg/jour.

Les problèmes les plus connus d'un empoisonnement au méthanol sont les problèmes de la vue comme une vision embrumée, un rétrécissement progressif du champ visuel et perte de la vue. Le formaldéhyde est un cancérigène connu, il cause des dommages à la rétine, s'oppose à la reproduction de l'ADN et cause des malformations prénatales, d'après le Dr Jeremy Guggenheim de l'université de Cardiff. . [II, IV, XVII]

 

Réalité sur la consommation de méthanol :

Un litre de boisson édulcorée à l'aspartame contient environ 56 mg de méthanol. Les gros utilisateurs de produits contenant de l'aspartame consomment jusqu'à 250 mg de méthanol quotidiennement ou 32 fois la limite fixée par l’EPA (Environnemental Protection Agency). Or, 1 litre de jus de fruits ou de légumes contient environ 200 à 280 mg de méthanol. Cela indique que les quantités de méthanol apportées par l’aspartame en tant qu’additif alimentaire sont inférieures à celles apportées par certains aliments naturels.

Le méthanol est naturellement présent dans les fruits et les légumes (figure 15). Il se retrouve en tant qu'alcool libre ainsi que lié sous la forme de composants appelés méthyles esters. La pectine est un exemple de composé alimentaire qui contient des groupes méthyles esters et qui est présent dans tous les fruits et légumes. Le méthanol est libéré une fois que de tels esters sont digérés. Les Européens consomment en moyenne 2 à 5g de pectine naturelle par jour, ce qui fournit jusqu’à 0,7 g de méthanol. Ces quantités de méthanol, en plus de celles provenant d’autres sources, sont transformées par l’organisme sans problèmes.

Pour entraîner une réponse toxique chez l’adulte, le méthanol doit être consommé à des doses de 200 à 500 mg/kg de poids corporel. La DJA de l’aspartame (40mg/kg de poids corporel) libérerait 4,4 mg de méthanol/kg de poids corporel. Ceci est donc insignifiant. Ces données relativisent les effets toxiques potentiels des métabolites du méthanol (formaldéhyde et acide formique) après exposition à l’aspartame. En effet, quand le méthanol est métabolisé, l’essentiel de la molécule finit par devenir de l’acide formique ou du formate dans le sang et est excrété dans les urines. [VI, XV, XVII]

         Figure 15 Représentation de la quantité de méthanol dans les boissons

          Source : Nutrition : "la vérité si je mange" [XVIII]

 

3.     Dicétopipérazine

En solution, l'aspartame tend à se dégrader en dicétopipérazine, substance qui, lorsqu'elle est chauffée est soupçonnée de pouvoir conduire à la formation de nitrosamines, produits cancérigènes. L'apparition de dicétopipérazine en dessous de 105 °C est extrêmement faible, on peut donc utiliser l'aspartame sans problème pour sucrer son café. La Dicétopipérazine est formée dans des produits liquides contenant de l'aspartame au cours d'un stockage prolongé. En revanche, à 150°C, la transformation de l'aspartame en dicétopipérazine est totale en environ 30 minutes. L'aspartame ne devrait donc pas être utilisé pour la cuisson puisqu'en se dégradant, il perd en outre son pouvoir sucrant. [II, IV, X]

 

Réalité sur la dicétopipérazine :

La toxicité de la dicétopipérazine, a été évaluée chez les animaux de laboratoire. Cette substance n’est ni génotoxique ni cancérogène chez le rat et la souris. La dose journalière acceptable de la dicétopipérazine pour l’homme a été fixée à 7,5 mg/kg de poids corporel/j, d'après le comité d'experts sur les additifs alimentaires (JECFA 1980). Aucune étude scientifique sur l'homme ne permet à se jour de corroborer l'hypothèse selon laquelle la dicétopipérazine serait cancérogénétique. [VI]

D.   Consommation humaine et DJA

La consommation d’aspartame d’origine alimentaire a été estimée par des études de consommation réalistes en population générale adulte et enfant. De plus, des estimations de consommation ont été faites pour les populations adultes et d’enfants diabétiques qui, selon le Comité Scientifique de l’Alimentation Humaine (CSAH) pour l’Europe, sont celles les plus fortement exposées.

A partir d’enquêtes, des données d'achats des aliments et en utilisant les valeurs maximales autorisées on obtient une consommation moyenne de 0,4 mg/kg/j soit 1 % de la DJA.

La DJA est déterminée d'après la dose sans effet à long terme sur l'animal, divisée le plus souvent par un facteur de sécurité de 100 qui est censé englober tous les facteurs inconnus : état nutritionnel, âge, état sanitaire, etc. Ainsi une DJA de 10 mg/kg/j chez l'homme signifie que la dose sans effet sur l'animal est de 1 g/kg/j. Par conséquent le chiffre de DJA rassure sur l'emploi de l'additif à long terme dans un aliment donné.

D'après les estimations disponibles issues des différents pays européens, l'apport alimentaire en aspartame chez les grands consommateurs de cet édulcorant (incluant les adultes, les enfants et les diabétiques de tout âges) est loin de dépasser la DJA. [XIV, XV, XVIII]

 

Tableau 2 : DJA en fonction de la catégorie de population

Source : Additifs et auxiliaires de fabrication dans les industries agroalimentaires.  [XIV]

 

Catégories

Consommation maximale

en mg/kg/j

% de la DJA

Adulte

Entre 0,05 et 0,4

7

Enfants et adolescents

Entre 0,13 et 2,8

7

Adultes diabétiques ou en restriction calorique

Entre 1,28 et 10,1

3 à 25

Enfants diabétiques français

15,6

40

 

Par conséquent, les estimations de consommation de l’aspartame n’ont pas montré de dépassement de la DJA, en particulier en France, même pour les enfants diabétiques qui sont les plus gros consommateurs d’aspartame.

CONCLUSION

 

 

Depuis sa découverte fortuite, l'utilisation de l'aspartame s'accroît dans les produits alimentaires. En effet, son fort pouvoir sucrant lui confère un intérêt nutritionnel pour les consommateurs qui ingèrent des aliments de plus en plus calorique. Pour faire face à la demande, la synthèse industrielle a due se tourner vers une voie biotechnologique plus rentable.

Cependant, l'utilisation de cet additif est très controversée, elle a fait l'objet de nombreuses études notamment sur les produits issus de son métabolisme dans l'organisme, ou de mauvaises conditions environnementales. Les métabolites de l'aspartame sont des composés que l'on retrouve dans l'alimentation courante et qui sont aussi produits par le mécanisme des cellules. L'aspartame est une source mineure de phénylalanine, d'acide aspartique et de méthanol en comparaison des apports alimentaires courants de ces substances. Ceux ci ne peuvent donc pas être à l'origine des effets néfastes attribués à l'aspartame aux conditions normales d'emploi de cet édulcorant.

La consommation d'aspartame chez l'homme, même dans les populations particulièrement exposées comme les enfants diabétiques ne dépasse pas la dose journalière acceptable. D'ailleurs, le Comité Scientifique sur l'Alimentation de la Commission Européenne a conclu qu'aucun argument ne permet actuellement de remettre en cause l'innocuité de l'aspartame.

Aujourd'hui, les travaux des chercheurs s'orientent dans deux directions. Certains essaient de mettre au point une forme résistante à la chaleur dans le but d'une utilisation moins restrictive, d'autres, au Japon, misent sur le génie génétique pour optimiser les caractéristiques de cet édulcorant.

 

 


Table des illustrations

Tableau 1 : Concentration maximale des métaux lourds. 7

Tableau 2 : DJA en fonction de la catégorie de population.. 25

Figure 1 : Formule chimique de l'aspartame.. 3

Figure 2 : doses maximales d'emploi de l'aspartame.. 6

Figure 3 : Photographie d'une étiquette d'une boisson contenant de l'aspartame   8

Figure 4 : voies de synthèses de l'aspartame.. 9

Figure 5 : principe de la réaction avec les MIPs. 10

Figure 6 : Bilan chimique de la réaction de fabrication de l'aspartame   12

Figure 7 : schéma de la chaîne de production d'aspartame.. 13

Figure 8 : pouvoir sucrant des édulcorants intenses en fonction du temps  14

Figure 9 : acide aspartique.. 17

Figure 10 : Représentation de la quantité d'acide aspartique dans les aliments  18

Figure 11 : phénylalanine.. 18

Figure 12 : Mécanisme de la Phénylcétonurie.. 19

Figure 13 : contenu en phénylalanine dans les aliments. 20

Figure 14: étapes de décomposition thermique de l'aspartame.. 22

Figure 15 Représentation de la quantité de méthanol dans les boissons  24

 


BIBLIOGRAPHIE

Sites Internet

Ø      [I] Académie Nancy Metz. Les acides aminés [en ligne]. Disponible sur : <http://www.ac-nancy-metz.fr/enseign/physique/CHIM/Jumber/aminoacides.htm> (page consultée le 28/12/03)

 

Ø      [II] Aspartame Consumer Safety Network. L'amère vérité sur l'aspartame [en ligne]. Disponible sur : <http://www.earthrainbownetwork.com/AspartameTruth.htm> (page consultée le 20/11/03)

 

Ø      [III] Aspartame Information Center. Aspartam beneficts [en ligne]. Disponible sur : <http://www.aspartame.org/aspartame_benefits.html> (page consultée le 20/11/03)

 

Ø      [IV] Aspartame Information Center. Aspartam expert [en ligne]. Disponible sur : <http://www.aspartame.org/aspartame_experts.html> (page consultée le 20/11/03)

 

Ø      [V] Chemical Industry Education Center. Aspartame [en ligne]. Disponible sur : <http://www.uyseg.org/catalysis/aspartame/aspartame3.htm> (page consultée le 28/12/03)

 

Ø      [VI] SWEETENERS. Aspartame : ses composants et son innocuité [en ligne]. Disponible sur : <http://www.sweeteners.org/aspartamecomponents.fr.html> (page consultée le 12/01/04)

 

Ø      [VII] UNIPEX. Acide DL-Malique, le goût d'Aujourd'hui et de Demain [en ligne]. Disponible sur : <http://195.68.24.130/UNIPEXINS/FRA/htm> (page consultée le 20/11/03) SYNERGIE

 

Ø      [VIII] UNIVERSITE DE LYON. Déplacement d'équilibre [en ligne]. Disponible sur : <http://www.ens-lyon.fr/DSM/magistere/projets_biblio/2002/jrouzair/equilibre.htm> (page consultée le 20/11/03)

 

Ø      [IX] UNIVERSITY OF NEWFOUNLAND CANADA. Defects of Phenylalanine Metabolism: Phenylketonuria [en ligne]. Disponible sur : <http://www.mun.ca/biology/scarr/Phenylketonuria.htm> (page consultée le 13/01/04)

 

Ø      [X] U. S. Food and Drug Administration. FOOD ALLERGIES [en ligne]. Disponible sur : <http://www.cfsan.fda.gov/~dms/wh-alrg1.html> (page consultée le 06/01/04)

Ouvrages

 

Ø      [XI] CHEFTEL J-C, CUQ J-L et LORIENT D. Protéines alimentaires. Tec § Doc, Lavoisier. 1985.

 

Ø      [XII] DENIL M. et LANNOYE P. Guide des additifs alimentaires. Les précautions à prendre. Frison-Roche. Juillet 2001, pp. 100-101.

 

Ø      [XIII] MOLL N. et MOLL M. Additifs alimentaires et auxiliaires technologiques. Chimie et santé. Masson. 1990, pp. 99-100-101-102.

 

Ø      [XIV] MULTON J-L. Additifs et auxiliaires de fabrication dans les industries agroalimentaires. Sciences et Techniques alimentaires. Tec § Doc, Lavoisier. 1992, pp 45-54-59-61-73-316-318-330.

 

Rapports

 

Ø     [XV] AFSSA. Rapport de l’agence Française de Sécurité Sanitaire des Aliments sur la question d’un éventuel lien entre exposition à l’aspartame et tumeurs du cerveau [en ligne]. Disponible : <http : www.afssa.fr/ftp/basedoc/aspartam%202002aaat2000sa0249.pdf> (page consultée le 06/01/04)

 

Ø      [XVI] INSTITUT FRANÇAIS DE LA NUTRITION. Les additifs. Dossier Scientifique N°10. Septembre 1998, pp. 61-62-65-66

 

Articles

 

Ø      [XVII] LEGIFRANCE. Textes généraux ministère de l'économie, des finances et de l'industrie [en ligne]. J.O, n° 260, 8 novembre 1997, pp. 16265. Disponible sur : <http://www.legifrance.gouv.fr/WAspad/UnTexteDeJorf?numjo=ECOC9700107A> (page consultée le (12/01/04)

 

Ø      [XVIII] THIERRY SOUCCAR. Nutrition : "la vérité si je mange". Sciences et Avenir. Avril 2003, n° 675, pp. 74-75

 

 


 

 

 

 

 

 

 

ANNEXES

 

 


ASPARTAME

Synonyme : Ester méthylique de I'aspartyl-phénylalanine

Appellations anglaises : Aspartame, Aspartyl-phenylalanine méthyl ester, APM

 

FABRICANTS/DISRIBUTEURS:

ARNAUD SA

68, avenue du Général Michel Bizot

BP 29 75560 Paris Cedex 12

Tel. (1)44.73.10.00

EUROSUCRE

21-25, rue Balzac

75406 Paris Cedex 08

Te1. (1) 49.53.79.07

Fax (1) 49.53.79.20 Fax (1) 44.73.10.13

 

NUTRASWEET AG 69, rue d'Aguesseau 92100 Boulogne

Tel. (1) 46.10.50.37 Fax (1) 46.10.50.64

 

CLASSIFICATION U. E.:

Edulcorant E 951

 

DENOMINATIONS CHIMIQUES:

Ester N- méthylique de N-L-α-aspartyl-L-phenylalanine : Ester N- méthylique de l'acide - amino -N- (α-carbométhoxy-éthoxvphenyl) - succinamique.

FORMULE BRUTE :

C 14  H 18  N2  05

 

MASSE MOLECULAIRE :

294,31

 

DENOMINATIONSETPRESENTATIONS COMMERCIALES:

Produit ARNAUD:

NUTRASWEET

 

Produit EUROSUCRE :

HOLLAND SWEETENER COMPANY (HSC). fats de 25 kg

 

Produit NUTRASWEET :

NUTRASWEET INGREDIENT EDULCORANT.

poudre ou granules, en fûts de 25 kg ou boites de I et 5 kg

DESCRIPTION ET PRINCIPALES

CARACTERISTIQUES PHYSICO-CHIMIQUES

Ø                 Aspect : poudre cristalline blanche inodore ayant une saveur sucrée:prononcée. Pouvoir sucrant environ 200 fois supérieur a celui du saccharose.

Ø                 Solubilité : faiblement soluble dans I'eau et l'éthanol.

 

CRITERESDEPURETE:

Ø                 Teneur : pas moins de 98 % de C 14  H 18  N2  05 et pas plus de 102 % calculés sur la base de la forme anhydre.

Ø                 Perte lors du séchage : pas plus de 4,5 % (105 °C, 4 h).

Ø                 Cendres sulfatées : pas plus de 0,2 %, sur la base du produit anhydre.

Ø                 pH : entre 4,5 et 6 (solution 1/125)

Ø                 Facteur de transmission : le facteur de transmission d'une solution à1 % dans 1'acide chlorhydrique 2 N, détermine dans une cellule de 1 cm a 430 nm, à l’aide d’un spectrophotomètre approprié, en utilisant de 1'acide chlorhydrique 2 N comme solution témoin, ne doit pas titre inférieur a 0,95, ce qui équivaut a un coefficient d'absorption ne dépassant pas approximativement 0,022.

Ø             Pouvoir rotatoire spécifique.- [α] 20D = + 14,5° a + 16,5°. Déterminer dans 15N de solution d'acide formique à 4 % dans un délai de 30 minutes suivant la préparation de l'échantillon.

Ø             Arsenic : pas plus de 3 mg/kg, sur la base du produit anhydre.

Ø             Plomb : pas plus de I mg/kg, sur la base du produit anhydre.

Ø             Métaux lourds : pas plus de 10 mg/kg, exprimes en plomb, sur la base du produit anhydre.

Ø             Acide 5-benyl-3,6-dioxo-2 piperarineacetique : pas plus de 1,5 %. sur la base du produit anhydre

FONCTION TECHNOLOGIQUE

Edulcorant

DJA

-0.40 mg/kg de poids corporel

 

AUTORISATIONS E 951

Les doses maximales d'emploi indiquées a l'annexe se rapportent aux denrées alimentaires prêtes a titre consommées, préparées selon le mode d'emploi (article 2 paragraphe 4 de la directive 94/35/CE du 30 juin 1994, JOCE n° L 237 du 10 septembre 1994).

 

DENREES ALIMENTAIRES

 

QUANTITES MAXINIALES

 

REFERENCES

Boissons non alcoolisées 

 

Annexe de la directive 94/35/CE du 30 juin 1994, JOCE n° L 237 du 10 septembre 1994 

-Boissons aromatisées a base d'eau à valeur  énergétique réduite, ou sans sucres ajoutés 

600mg/l

 

-Boissons a base de lait et produits dérives 600 mg/l ou de jus de fruits. A valeur énergétique réduite, ou sans sucres ajoutes 

600mg/l

 

Desserts et produits similaires 

 

 

- Desserts aromatises à base d'eau a valeur 1 000 mg/kg énergétique réduite  ou sans sucres ajoutes 

1000 mg/kg

 

- Préparations a base de lait et produits dérives, à valeur énergétique réduite ou sans sucres ajoutes 

1000 mg/kg

 

- Desserts a base de fruits et légumes, à valeur énergétique réduite ou sans sucres ajoutes 

1000 mg/kg

 

Desserts a base d'œufs, à valeur 1 000 mg/kg énergétique réduite ou sans sucres ajoutes 

1000 mg/kg

 

Desserts a base de céréales, à valeur 1 000 mg/kg énergétique réduite ou sans sucres ajoutes ;;

 1000 mg/kg

 

Desserts a base de matières grasses, à valeur énergétique réduite ou sans sucres ajoutes ;;

 1000 mg/kg

 

" Snacks " : amuse gueules salés et secs à base d'amidon ou de noix et noisettes, préemballés et contenant certains arômes

 500 mg/kg

 

Confiseries

1 000 mg/kg

Annexe de la directive 94'35/CE du 30 juin 1994, JOCE n° L 237 du 10 septembre 1994

- Confiseries sans sucres ajoutes

1000 mg/kg

 

- Confiseries a base de cacao ou de fruits secs a valeur énergétique réduite. ou sans sucres ajoutes

2000 mg/kg

 

- Confiseries a base d'amidon a valeur énergétique réduite, ou sans sucres ajoutes

2000 mg/kg

 

- Pâtes a tartiner a base de cacao. de lait. de fruits sets ou de grasses. A valeur énergétique réduite ou sans sucres ajoutes

1000 mg/kg

 

- Chewing-gum sans sucres ajoutes - - - Cidre et poire

5500 mg/kg

 

- Bières sans alcool ou avant une teneur en alcool ne dépassant pas 1.2 % du volume

600 mg/l

 

- " Bière de table e/Tafelbier/Table Beer " (contenant moins de 6 % de mout primitit) sauf " Obergariges Einfachbier "

600 mg/l

 

- Bières avant une acidité minimale de 30 milli-equivalents exprimée en Na OH

600 mg/l

 

- Bières brunes du type oud bruin

600 mg/l

 

- Glaces de consommation. a valeur énergétique réduite ou sans sucres ajoutes

800mg/Kg

 

- Fruits en boite ou en bocal. a valeur énergétique réduite ou sans sucres ajoutés

1000mg/kg

 

- Confitures. gelées et marmelades a valeur énergétique réduite

1000mg/kg

 

- Préparations de fruits et légumes a valeur énergétique réduite

1000mg/kg

 

- Conserves de fruits et légumes aigres-douces

300 mg/kg

 

- Conserves et semi-conserves aigres-douces de poissons et marinades de poissons, crustacés et mollusques

300 mg/kg

 

- Sauce

350 mg/kg

 

- Moutarde

350 mg/kg

 

- Produits de la boulangerie fine destines a une alimentation particulière

1700mg/kg

 

- Préparations complètes de régime contre la prise de poids destinées a remplacer un repas ou le régime alimentaire dune journée

800 mg/kg

 

Préparations complètes et apports nutritionnels a prendre sous surveillance médicale

1 000 mg/kg

 

- Compléments alimentaires/intégrateurs de régime diététique liquides

600 mg/kg

 

- Compléments alimentaires/intégrateurs de régime diététique solides

2 000 mg/kg

 

Vitamines et preparations diétetiques

5 500 mg/kg

Annexe de la directive 94/35/CE du 30 juin1994. JOCE n° L 237 du 10 septembre1994

- Chewing-gum avec sucres ajoutés (comme exhausteur de goût uniquement)'

2 500 mg/kg

Annexe IV de la directive 95 /2/CE du 20 février 1995. JOCE n° L 61 du 18 mars1995